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Abstract 

Despite using different algorithms, most unsupervised automatic phone segmentation methods 

achieve similar performance in terms of percentage correct boundary detection. Nevertheless, 

unsupervised segmentation algorithms are not able to perfectly reproduce manually obtained 

reference transcriptions. This paper investigates fundamental problems for unsupervised 

segmentation algorithms by comparing a phone segmentation obtained using only the acoustic 

information present in the signal with a reference segmentation created by human transcribers. 

The analyses of the output of an unsupervised speech segmentation method that uses acoustic 

change to hypothesise boundaries showed that acoustic change is a fairly good indicator of 

segment boundaries: over two thirds of the hypothesised boundaries coincide with segment 

boundaries. Statistical analyses showed that the errors are related to segment duration, 

sequences of similar segments, and inherently dynamic phones. In order to improve 

unsupervised automatic speech segmentation, current one-stage bottom-up segmentation 

methods should be expanded into two-stage segmentation methods that are able to use a mix 

of bottom-up information extracted from the speech signal and automatically derived top-

down information. In this way, unsupervised methods can be improved while remaining 

flexible and language-independent.  

 

Pacs numbers:  

43.72.Ar (Speech analysis and analysis techniques; parametric representation of speech),  

43.72.Ne (Automatic speech recognition systems) 
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I. INTRODUCTION 

Over the past few years, interest in the automatic segmentation of speech has increased. In the 

fields of automatic speech recognition and text-to-speech there is a need for large amounts of 

reliably segmented speech data, for instance, for improving recognition and synthesis 

performance. Furthermore, automatic speech segmentation methods are used for the 

automatic phonetic analysis of large amounts of speech data (e.g., Kuperman et al., 2007). In 

the past, speech data were segmented by hand, but with the need for and availability of ever 

increasing amounts of speech data the task of manual speech segmentation becomes too time-

consuming and expensive. Furthermore, manual labelling and segmentation is subjective, 

resulting in significant differences in the transcriptions created by different expert listeners 

(Cucchiarini, 1993). Automatic systems, on the other hand, are consistent. 

 Automatic speech segmentation is the partitioning of a continuous speech signal into 

discrete, non-overlapping units. Generally, automatic speech segmentation methods are 

divided into two types. Supervised methods require a priori knowledge (e.g, Brugnara et al., 

1993; Kim & Conkie, 2002; Pellom & Hanson, 1998). Most of the supervised methods are 

based on forced alignment techniques starting from an orthographic transcription of the 

speech material. This means that the representation of the word or utterance in terms of 

discrete units is known (from a lexicon which includes the words’ pronunciations) and pre-

trained acoustic models of these units are needed for the forced alignment. The task of the 

segmentation algorithm is then to optimally locate the unit boundaries (Sharma & Mammone, 

1996). Unsupervised methods, on the other hand, require no training data for segmenting the 

speech signal. Instead, they use sets of rules derived from or encoding human knowledge to 

segment speech. Acoustic (rate of) change (e.g., Sharma & Mammone, 1996; see for early 

work on unsupervised automatic speech segmentation, Bridle & Sedgwick, 1977; for more 

recent work, see below) is an example of prior human knowledge that is used to solve the 
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speech segmentation task. The task for an unsupervised segmentation algorithm then is two-

fold; the number of segments in the speech signal needs to be determined (this is usually 

determined by a parameter such as the parameter � described in Section III) and the position 

of the boundaries on the basis of the acoustic signal needs to be determined (Sharma & 

Mammone, 1996). 

 There are some good reasons for using unsupervised methods. First of all, supervised 

methods require (extensive) training on (carefully prepared) speech material. The training 

material needs to be transcribed in terms of the units the algorithm is supposed to segment the 

speech signal into, usually phones. Furthermore, usually large amounts of training data are 

needed to train the supervised algorithms; however, large amounts of training data are not 

always easily obtained, and neither are transcriptions. Unsupervised methods, on the other 

hand, do not require training; so, obviously no training material is needed. For each new 

language, speech style, dialect or accent, supervised algorithms may need to be retrained, 

whereas unsupervised methods are based on human knowledge and understanding of the 

nature of speech and are therefore language and speech style independent. Furthermore, 

supervised methods require the units to be defined beforehand, e.g., phones, diphones, 

syllables, words, etc., in order to be able to train models for them, whereas unsupervised 

methods, in principle, do not. Thus unsupervised methods yield a desirable and more flexible 

framework for the automatic segmentation of speech. Finally, unsupervised segmentation 

methods are generally simpler algorithms than supervised methods (Dusan & Rabiner, 2006).  

This paper focuses on unsupervised speech segmentation. A review of the current 

approaches for unsupervised speech segmentation shows that although very different 

approaches are used, the results obtained are remarkably similar (see Section II). 

Nevertheless, unsupervised speech segmentation algorithms are not yet able to perfectly 

reproduce manually obtained reference transcriptions (see also Section II). This paper 
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compares a phone segmentation obtained using only the acoustic information present in the 

signal with a reference segmentation created by human transcribers. We present an in-depth 

analysis (Section V) of the output of our unsupervised speech segmentation algorithm (see 

Section III) on the task of segmenting speech from the TIMIT database (Garofolo, 1988; 

Section IV). This unsupervised speech segmentation algorithm uses acoustic change as the 

criterion to segment the speech signal into phones.  

Naturally, the choice of the automatic segmentation method, and the assumptions 

underlying the method, will have an impact on the segmentation results. We chose to analyse 

the results of an automatic segmentation algorithm that only uses acoustic change as the 

criterion for hypothesising a segment boundary, as we believe that other criteria, such as 

heuristics or sophisticated signal processing will add additional complexity to the underlying 

system, which will have an impact on the results. If we then perform analysis on such a highly 

complex automatic segmentation algorithm, the results will be highly specific to that 

segmentation algorithm. Additionally, more convoluted results will mean that the effects of 

different parts of the segmentation algorithm may become difficult to tease apart. Hence we 

use an automatic segmentation method that only uses acoustic change as a criterion in order to 

ensure that the analysis is clean. Furthermore, we believe that the assumptions underlying our 

method have implications for other unsupervised automatic speech segmentation methods. 

We will address this issue in Section VI. 

This enterprise will indicate where acoustic change is indeed a correct indicator of a 

segment boundary, and where it is not, thus revealing weaknesses in the criterion of acoustic 

change for unsupervised automatic speech segmentation. Furthermore, since most 

unsupervised speech segmentation algorithms use acoustic change as the means to decide 

when to hypothesise a boundary we believe that the analysis presented here is of interest for 

unsupervised speech segmentation in general, and will reveal weaknesses in automatic speech 
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segmentation technologies. The paper ends with suggestions on how to develop unsupervised 

speech segmentation algorithms that are able to create segmentations that are closer to those 

created by human transcribers (Section VI). 

II. PERFORMANCES OF UNSUPERVISED SPEECH SEGMENTATION 

APPROACHES: A BRIEF OVERVIEW 

It is not straightforward to compare the performances of different unsupervised speech 

segmentation algorithms described in the literature as algorithms are often tested on different 

sets of speech material. To make the comparison here as fair as possible, we will only discuss 

those methods that have been tested on TIMIT as the majority of the reported algorithms have 

been tested on this speech corpus.  

 The performance of speech segmentation algorithms is usually assessed by comparing 

their segmentation to a ‘ground truth’, which usually consists of manually placed boundaries, 

such as those provided with the TIMIT database. A hypothesised boundary is judged to be 

correctly placed if it falls within a ‘tolerance window’ from the segment boundary in the 

ground truth segmentation. Generally, a tolerance window of 20 ms is used (although some 

researchers report performances for a range of distances). This distance of 20 ms is somewhat 

arbitrarily chosen, however it is backed-up by evidence from manual segmentation by 

Wesenick and Kipp (1996). They found that on a set of 64 read German sentences hand 

segmented by three humans, the mean deviation in placement of the segment boundaries 

could be as large as 16 ms; while 93% of the manual segmentations were inside a 15 ms time 

interval and 96% within 20 ms. So, 20 ms also seems to be a window within which human 

segmentations are in agreement with one another. The performance of a segmentation 

algorithm is generally presented in terms of the correct detection rate (CDR), which is 

expressed as: 

 100
_#

_#
×

truthboundaries

correctboundaries
=CDR             (1) 
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where boundaries_correct are the hypothesised boundaries that fell within the tolerance 

window distance from the ground truth boundaries, and boundaries_truth the boundaries in 

the ground truth segmentation. 

A second important issue when comparing the performances of different segmentation 

methods is the number of boundaries hypothesised: with an equal number of correctly placed 

boundaries, the method that has a number of hypothesised boundaries closest to the number of 

actual boundaries in the ground truth is better. This is expressed as a percentage over- (or 

under-)segmentation (OS): 

1001
truthboundaries
foundboundaries

=OS ×��
�

�
��
�

�
−

_#
_#

          (2) 

where boundaries_found are the boundaries hypothesised by the segmentation algorithm, and 

boundaries_truth the boundaries in the ground truth segmentation. 

 Pereiro Estevan et al. (2007) presented an unsupervised speech segmentation method 

based on maximum margin clustering (see Section III for more details). At a tolerance 

window of 20 ms, and an over-segmentation of −1.4% (i.e., an under-segmentation), the 

method obtained a CDR of 67.9% on the TIMIT test data. Aversano et al. (2001) obtained a 

CDR of 73.6% correct on 480 utterances produced by 48 speakers from the TIMIT database, 

at an over-segmentation of 0% and a 20 ms tolerance window, using a method that captures 

the changes in speech signals defined as a “jump function” and subsequently hypothesises 

boundaries at the peaks of the jump function. Qiao et al. (2008) tried to solve the 

segmentation problem by searching for the “optimal segmentation” using a probabilistic 

framework. Their “rate distortion estimated by a full covariance matrix” method obtained a 

CDR of 76.7% on the training set of TIMIT, using a 20 ms tolerance window; they however 

did not report the over-segmentation rate. Dusan and Rabiner (2006) presented a method that 

detects boundaries by searching for the peaks in a spectral transition measure. They obtained a 
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performance of 84.6% of correctly detected boundaries at a 20 ms tolerance window on the 

training set of TIMIT; they did not report over-segmentation rates. 

 

III. THE SPEECH SEGMENTATION ALGORITHM 

As explained above, we investigated the fundamental problems for automatic speech 

segmentation algorithms. To that end, we used a segmentation algorithm based on acoustic 

change as a criterion in order to ensure that the analysis is clean. We opted for the 

unsupervised speech segmentation algorithm presented in Pereiro Estevan et al. (2007). The 

reasons for this choice are two-fold. First of all, in order to investigate the fundamental 

problems for automatic speech segmentation algorithms, patterns in the errors are more easily 

detected when there are more errors. Second, the algorithm by Pereiro Estevan et al. was 

easily available.  

 

 

Figure 1. The maximum margin criterion: a and b are examples of a non-optimal dichotomy, 

c is an example of an optimal dichotomy. 

 

The speech segmentation algorithm relies on a method called maximum margin 

clustering (MMC; Xu et al., 2004). MMC is a promising kernel method. It is an unsupervised 

form of support vector machine (SVM; Burges, 1998): the two are related by the maximum 

margin criterion for finding the optimum solution. The objective of MMC is to split a set of 

unlabelled feature vectors (represented by the dots in Figure 1) such that the margin 

separation between the two resulting sets or clusters is maximal. Figures 1a and 1b are 
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examples of a non-optimal dichotomy. The empty region bounded by the two lines is called 

the margin and should have maximal width, that is, it should be as wide as possible while 

remaining empty. Figure 1c is an example of an optimal dichotomy. 

The speech was parameterised by 12 Mel Frequency Cepstral Coefficients (MFCCs) 

and log energy and augmented with their first and second derivatives resulting in 39-

dimensional MFCC vectors. The MFCCs were computed on windows of 15 ms with a 5 ms 

frame shift, and cepstral mean and variance normalisation was applied. 

A sliding window 18 MFCC vectors wide (90ms) is used to isolate a small section of 

the signal for analysis. The MMC algorithm is applied to the MFCC vectors inside the 

window. Each MFCC vector is assigned to either the left or right of the margin on the basis of 

the maximum margin criterion, resulting in two clusters such that the MFCC vectors on one 

side of the margin are more similar to one another than the MFCC vectors on the other side of 

the margin, and ensuring that the margin between the two clusters is maximised. Note that, in 

the present study, clustering ignores the time ordering of the MFCCs. The cluster assignment 

is plotted in the first column of Figure 2a with a different shading in each element to indicate 

the frames’ assignments, thus each element in the first column of Figure 2a indicates the 

cluster assignment of one of the 18 MFCC vectors. The sliding window is shifted by one 

frame (5 ms) and the process is repeated producing the subsequent columns of Figure 2a. 

Thus, each MFCC vector is part of the analysis window multiple times (i.e., 18 times, as the 

window is 18 frames wide). When a boundary (a change in the shading) is hypothesised in 

one column, then in a subsequent column the same boundary should occur one frame earlier 

(i.e., lower) in the window, as the MFCC vector’s position has shifted one frame compared to 

its position in the previous analysis window. Hypothesised boundaries thus manifest 

themselves as diagonal structures in Figure 2a, such as shown in rectangle A of Figure 2a. 
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Figure 2. a: Sliding window frame assignment representation; each column shows the cluster 

label assignments (light/dark grey) at a given time. b: Euclidean distance between the means 

of the clusters; the detected boundaries are indicated by the solid vertical lines. Horizontally, 

the TIMIT segments and boundaries are indicated with the dashed vertical lines of the phrase 

“She had your dar(k)” (the [k] is not present in the figure; in IPA: /�I h�d j�r d�/). 

 

The method used to find potential boundaries consists of a combination of two 

approaches. The first method detects the diagonal structures in Figure 2a using a mask, which 

is divided along its diagonal into two: each element in the upper right triangle must match the 

lighter shaded elements of the graph while the elements in the lower left triangle must match 

the darker shade. The total number of matching elements in the mask is counted each time. 

When all of the mask’s elements are matched then a segment boundary is marked at the 

middle vector. Tuning experiments (on the TIMIT test set) described in Pereiro Estevan et al. 

(2007) showed that the optimal size of the mask is a 4 x 3 matrix. The second approach plots 

the Euclidean distance between the centres (means) of the two clusters in the sliding analysis 

window in MFCC space. When the Euclidean distance between the cluster means shows a 

peak (vertical lines in Figure 2b) then a boundary is hypothesised. A parameter � controls the 
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sensitivity of the peak detector. It specifies the minimum amount that the curve must decrease 

and then increase before another peak is detected. A smaller � results in more hypothesised 

boundaries, whereas a greater � results in fewer hypothesised boundaries. Tuning experiments 

(on the TIMIT test set) described in Pereiro Estevan et al. (2007) showed that �=0.001 yielded 

the best results. 

The detected boundaries from both approaches are combined (in a left-to-right 

fashion) such that the resulting set of detected boundaries consists of all boundaries 

hypothesised by either approach. However, if both methods hypothesise boundaries within 2 

vectors (10 ms) of each other they are replaced by a single boundary located at the frame 

halfway between the two. We refer to this as ‘smoothing’. 

 

IV. THE SPEECH DATA 

This study used the TIMIT speech corpus. TIMIT consists of sentences read by 630 native 

speakers of eight major dialect regions of American English. It is labelled and segmented by 

hand in terms of 59 segments; i.e., the 50 phones listed in Table II, six labels for the closure 

parts of stop consonants (one for each stop; the stops listed in Table II only refer to the release 

parts of the stop consonants), and three labels for silence, which were collapsed onto one [sil] 

segment (see last row Table II). Of the 630 speakers in the corpus, 438 (70%) were male. For 

the analyses, TIMIT’s standard test set was used (excluding the sa utterances). The test set 

used consists of 1,344 utterances; 168 speakers each produced eight utterances from a set of 

624 different utterances. The average number of boundaries per utterance is 36.5. 

 

V. ANALYSING THE HYPOTHESISED AND MISSED BOUNDARIES 

The number of boundaries hypothesised by the MMC algorithm was similar to the number of 

boundaries in the transcriptions of the test set of TIMIT. The 1,344 utterances of TIMIT’s test 
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set contain 45,514 boundaries, while the speech segmentation algorithm hypothesised 44,885 

boundaries (resulting in an under-segmentation of 1.4%). Taking the TIMIT manual 

segmentations as ground truth, 30,926 (67.9%) of the hypothesised boundaries were correctly 

hypothesised, i.e., they appeared within a distance of 20 ms of the manually placed 

boundaries in TIMIT. Thus, 14,588 boundaries were missed. The algorithm also hypothesised 

13,959 boundaries that do not coincide with segment boundaries in TIMIT; we refer to these 

as additionally hypothesised boundaries. In these cases, there is apparently a difference 

between clusters of frames inside the sliding window that is big enough to warrant 

hypothesising a boundary, even though there is no segment boundary according to the TIMIT 

segmentation.  

We carried out an in-depth analysis investigating when these additional boundaries 

occur and when boundaries are missed taking the TIMIT manual segmentations as ground 

truth. In previous analyses (Scharenborg et al., 2007), we found that, like for automatic 

speech recognition systems, silence is problematic for our unsupervised speech segmentation 

algorithm. More specifically, the end of a silence tended to be hypothesised poorly due to 

problems with the endpointing algorithm. To avoid the endpointing problem, in the current 

study, we only investigated those boundaries that occurred at least 45 ms from the start or 

before the end of the reference TIMIT file. This resulted in 10,884 additionally hypothesised 

boundaries and 13,385 missed boundaries. Note, that there are still silence frames, for 

instance, due to silences between words. 

A. Set-up of the analyses 

In order to be able to generalise over different segments, we characterised segments by 

‘articulatory features’ (AFs). AFs are the acoustic correlates of articulatory properties of 

speech sounds. We used the set of seven articulatory features shown in Table I. The names of 

the AFs are self-explanatory, except maybe for staticity, which states whether an acoustic 
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change occurs (as, e.g., is the case for diphthongs: [dynamic]), or not ([static]). It might seem 

that the AF staticity will correlate almost perfectly with the hypothesised boundaries; 

however, this is not the case as staticity is related to the bigger manifestations of acoustic 

change, whereas our segmentation algorithm is also sensitive to smaller acoustic changes. 

[nil] is used when an AF is not applicable for a segment, for instance, consonants do not have 

a value for front-back (as their place of articulation is defined with the AF place) or 

roundness. [sil] is used for silent frames. Note that for voice, silence is marked as [-voiced], 

and for staticity as [static]. A final observation: in TIMIT, the silence (i.e., the closure) and 

release (i.e., the burst) part of stops have been annotated separately, but in our study the 

transcription of a sequence of a silence part followed by a release part is changed to represent 

a single segment. Table II presents an overview of the feature value specification of each of 

the phone labels in the TIMIT set. 

--- Tables I and II around here --- 

In the first series of analyses (Section V-B), we investigated the presence of additional 

boundaries. In the second series of analyses (Section V-C), we investigated the segment 

contexts in which boundaries were missed. Section V-D summarises the most salient results 

of the analyses. The analyses were carried out using generalised linear mixed-effect models, 

thus containing both fixed and random predictors, using the logit link function. The fixed 

predictors are the AFs we defined (see Table I) and the duration of a segment (see below). 

The random predictors are described below. The parameters of the generalised linear models 

are set using maximum likelihood estimation. We used contrast coding1. A generalised model, 

with the logit link function, has the form 

             durationN�+...+3AF3�+2AF2�+1AF1�+c= ,  

where logit p represents log [p(1-p)]. In our case, p is the probability that a boundary 

is inserted inside a segment or the probability of missing a boundary (logit p is the ‘dependent 

logit p 
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variable’). The constant c is the intercept. The different �s (Chatterjee et al., 2000) represent 

the relevance (effect size) of the different AFs and duration for the estimation of the logit p: a 

larger absolute � corresponds to a larger effect of the corresponding predictor. 

In the following analyses, only statistically significant (calculated using F-tests) 

effects are part of the final statistical model and reported. In addition, we report the absolute 

estimated values of the different �s, with an explanation of whether the likelihood of an 

additional or missed boundary increases or decreases with the associated feature.  

B. Additionally hypothesised boundaries 

We investigated whether the presence of an additional boundary within a segment can be 

predicted on the basis of its context. As indicated above, the algorithm hypothesised 10,884 

additional boundaries. When a boundary falls within a segment of which the initial boundary 

or final boundary is missing, it might be the case that the additional boundary is in fact a 

misallocated initial/final boundary instead of a ‘true’ additionally hypothesised boundary. We, 

therefore, only investigated those 19,033 segments for which the initial and final boundaries 

were correctly hypothesised. Of these 19,033 segments, 4,079 segments had an additional 

boundary; these were compared to the 14,954 segments that did not have an additional 

boundary. Thus, 37.5% (4,079 of 10,884) of the additional boundaries hypothesised by the 

algorithm were ‘true’ additional boundaries. The number of segments with additional 

boundaries thus is high enough to be able to detect patterns in the errors made by the 

unsupervised segmentation algorithm. 

For each target segment, as well as its preceding and succeeding segment, the phone 

label in the TIMIT transcription was determined. Additionally, the segment was rewritten in 

terms of its AF values (see Table II, for an overview). The duration and the AF values of the 

target segment, in addition to all two-way interactions, were tested as fixed predictors. 

Segment durations were calculated from the hand-segmented TIMIT data. The mean segment 
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duration over all analysed segments was 80.8 ms. As random predictors, speaker identity and 

the phone identities of the target segment itself and of the preceding and succeeding segments 

were tested. 

We ensured none of the variables correlated with one another in the analyses. In case a 

variable correlated with another, we either removed the variable from the analysis or 

reorganised the levels of the variable, as described below. However, for duration we followed 

a different path. The duration of a segment turned out to correlate with some of the AF values 

of the segment itself. We orthogonalised the duration of a segment with these AF values. We 

let the duration be predicted by the AF values with which it correlates, and used the residuals 

of this model as the ‘duration’ predictor in the analyses. This residual duration thus is the 

duration that cannot be predicted on the basis of the AF values. This procedure ensures that if 

we find an effect for duration it indeed can be attributed to duration and not to the AF values. 

The residual duration is calculated for every analysis separately. 

Since only manner can be meaningfully specified for all segments, we first 

investigated whether the presence of an additional boundary within a segment can be 

predicted by the manners of articulation of the phone sequence. Of the random predictors, 

speaker identity as well as the phone identities of the target and the preceding segment 

appeared to contribute to the explanation of the variation (ps<0.05). Furthermore, we 

observed robust effects of the residual duration of the segment (�=0.0220, 

F(1,19025)=1399.883, p<0.0001): additional boundaries are more likely in longer segments. 

Secondly, we observed robust effects of the manner of articulation of the segment under 

analysis (F(6,19025)=11.646, p<0.0001). 

The primary reason that longer segments are more likely to have additional boundaries 

is because of the applied segmentation algorithm. MMC analyses a fixed number of frames 

equivalent to 90 ms of speech. If a segment is longer than 90 ms, the analysis window will 
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contain frames coming from one phone only. MMC will always hypothesise a boundary, even 

if the acoustic change within the segment is very small as the MMC algorithm is sensitive to 

the tiniest of changes in the MFCC feature space. If the acoustic change is big enough, it is 

picked up by the peak detector, or if the MMC algorithm places the hypothesised boundaries 

consistently over time, the boundary is picked up by the mask detection method (see Section 

III). Both mechanisms result in the segment boundary being hypothesised. In the case of 

shorter segments whose durations match the size of the analysis window, the boundary 

hypothesised by MMC is more likely to indeed be a segment boundary because the frames in 

the analysis window will be from two segments, thus resulting in fewer additional boundaries.  

Further statistical analyses allowed us to establish four groups of manner values with 

the following general trends. As is shown in Figure 3, stops appeared to have most additional 

boundaries (32.8% of the stops had an additional boundary), followed by fricatives (25.2%) 

and silence (23.6%), followed by vowels (20.7%), while retroflexes (14.0%), nasals (7.8%), 

and approximants (3.4%) appeared to have the smallest number of additional boundaries. It is 

not surprising that stops get more additional boundaries than any other type of segments. The 

algorithm is designed to group together frames that are similar. Since stops consist of two 

distinct parts (remember that the closure and release part of stops are labelled as one segment 

– contrary to the standard TIMIT labelling), the algorithm tends to divide the stop into two 

separate segments resulting in the hypothesis of additional boundaries. Fricatives might show 

more variation than sonorant consonants resulting in more additional boundaries for 

fricatives. In case of silence, as the MMC algorithm is sensitive to the tiniest of acoustic 

change, it is likely it picks up small background noises, for instance, due to speaker noises or 

the microphone, resulting in additional boundaries. 



 

 17 

0

5

10

15

20

25

30

35

sto
p

fric
ativ

e

sil
enc

e
vo

wel

re
tro

fle
x

na
sa

l

ap
pro

xim
an

t

P
er

ce
nt

ag
e 

(%
)

 

Figure 3. The percentage of segments containing an additional boundary per manner class. 

 

The acoustic realisations of vowels, retroflexes, nasals, and approximants are very 

similar due to the lack of a stricture of the vocal tract sufficient to cause audible turbulence 

during the production of these segments. It might therefore be surprising that vowels behave 

differently from retroflexes, nasals, and approximants in that vowels get more additional 

boundaries. This difference can most likely be attributed to the fact that 29.0% of the [vowel] 

segments are diphthongs; during the realisation of a diphthong vowel the articulators move 

from one position to the next, resulting in acoustic change. Since the algorithm is designed to 

group together frames that are similar, the acoustic change results in the hypothesis of 

(additional) boundaries, and the algorithm divides the vowel into two separate segments. 

Retroflexes, nasals, and approximants on the other hand, are more or less static sounds, and 

this staticity results in fewer additionally hypothesised boundaries.  

In order to test the role of the other AFs in the hypothesising of additional boundaries, 

we analysed obstruents, nasal consonants, and vowels separately, and investigated which of 

their characteristics predict the presence of an additional boundary. For the obstruents, voice, 

manner (thus either [stop] or [fricative]), staticity, and place of articulation are meaningful 

AFs. The predictors manner and staticity are correlated, and in order to avoid collinearity, 
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staticity was taken out as a predictor. Furthermore, place and manner of articulation are 

correlated. To remove this correlation, we relabelled the values of place into three levels: 

[front], [middle], and [back], see Table III for an overview. 

--- Table III around here --- 

 We orthogonalised duration with the remaining predictors. The resulting model 

showed that of the random predictors only the identities of the target  and following segments 

contributed to the explanation of the variation (ps<0.0001). Furthermore, we found a main 

effect for residual duration (�=0.0197, F(1,19025)=626.105, p=0) and an interaction for 

residual duration and manner, while the main effect of manner was not significant: additional 

boundaries are more often hypothesised in longer stops than in fricatives (�=0.0155, 

F(1,19025)= 50.374, p<0.0001). Residual duration also interacted with voice (�=0.0106, 

F(1,19025)=14.029, p<0.001), which also showed a main effect (�=1.3723, 

F(1,19025)=30.187, p<0.0001): a [+voice] segment has a smaller likelihood for getting 

additional boundaries than a [-voice] segment; however, this difference is attenuated with 

increasing residual duration of the segment.  

As explained above, stops are more likely to get additional boundaries than fricatives. 

In longer stops, it is to be expected that the additional boundary is placed further away from 

the end boundary of the stop, and this boundary is therefore maintained instead of being 

‘smoothed’ away (see Section III), as may be expected for shorter stops. This will result in 

more additional boundaries especially for longer stops than for fricatives or shorter stops. 

We expected the acoustic change occurring in [+voice] segments to be less than the 

acoustic change occurring in [-voice] segments for two reasons. First, the closure part of 

voiced stops may contain voicing, resulting in less acoustic change from the closure to the 

burst compared to going from a silent closure to a burst in voiceless stops. Second, the burst 

in voiced stops are not as pronounced as the bursts of voiceless stops, which also results in 
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less acoustic change for the voiced segments. This difference between voiced and voiceless 

stops attenuates for longer segments, because of the way MMC performs segmentation. As 

explained above, if a segment is longer than 90 ms, the analysis window will contain frames 

coming from one phone only, resulting in more additional boundaries irrespective of the type 

of segment. This attenuating effect of duration was also found in other analyses. As it is 

explained here and above, we will not come back to it below. 

As voice and manner are not meaningful predictors for [nasal] segments, we only 

studied the role of staticity and place of articulation in addition to the random predictors 

speaker identity and the phone identities of the target, preceding, and succeeding segment, for 

[nasal] segments. In TIMIT, four static and three dynamic nasals occur. The [static] nasals are 

/m, n, �, ��/ (/��/ is the nasal flap in American English as in wintergreen); the [dynamic] nasals 

are syllabic /m �, n�, ��/. Duration was again orthogonalised. Place only consisted of three AF 

values, i.e. [bilabial], [alveolar], and [velar], as [labiodental] and [dental] nasals do not occur 

in English.  

Of the random predictors, only phone identity of the succeeding segment appeared to 

contribute to the explanation of the variation. We found main effects for the residual duration 

of the segment: additional boundaries were more likely for increasing segment duration 

(�=0.0410, F(1,19025)=149.264, p<0.0001). Staticity also showed a main effect (�=1.2210, 

F(1,19025)=24.174, p<0.0001): additional boundaries were less often hypothesised in [static] 

segments than in [dynamic] segments (7.2% of the [static] nasals had additional boundaries 

compared to 16.7% of the [dynamic] nasals; see also Figure 4). Finally, place of articulation 

showed a main effect (F(2,19025)=4.9334, p=0.01). 

Like the effect of duration (see the manner analysis for an explanation), the effect of 

staticity is as expected. Staticity indicates whether an acoustic change occurs in the segment 

or not, and as explained above, dynamic change is the basis for hypothesising boundaries (as 
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is for most unsupervised speech segmentation algorithms). It is thus to be expected that 

[dynamic] segments more often have an additional boundary than [static] segments.  
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Figure 4. Results for the analysis of the [nasal] segments: The percentage of segments 

containing an additional boundary per staticity feature value (left) and per place feature 

value (right). 

 

Further statistical analyses showed that additional boundaries were more likely for 

[bilabial] (9.6%) and [velar] (10.3%) nasals than for [alveolar] nasals (6.3%), which is also 

shown in Figure 4. The movements of the articulators are comparatively bigger when 

producing a constriction at the lips (for bilabial nasals) or in the back of the oral cavity (for 

velar nasals) compared to producing a constriction close to the alveolar ridge (for alveolar 

nasals). The transitions are thus comparatively greater for [bilabial] and [velar] nasals, which 

implies more acoustic change and thus more additionally hypothesised boundaries for 

[bilabial] and [velar] nasals. 

Vowels differ in their specification for height, backness, roundness, and staticity. With 

respect to the AF values for staticity, all diphthong vowels are marked as [dynamic], while all 

monothongs are marked as [static]. Backness correlated with roundness, height, and staticity 
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and was thus removed from the analysis. Duration was then orthogonalised on the basis of the 

remaining three predictors.  

Two random predictors appeared to contribute: speaker identity and the phone identity 

of the target segment (ps<0.05). We again found a main effect for residual duration 

(�=0.0153, F(1,19025)=364.728, p<0.0001): additional boundaries were more likely with 

increasing duration. The second predictor that showed a main effect was staticity (�=0.8915, 

F(1,19025)=38.122, p<0.0001): as before, the likelihood for additional boundaries was 

smaller for [static] segments than for [dynamic] segments; however, this difference attenuated 

with increasing residual segment duration (�=0.0067, F(1,19025)=19.334, p<0.0001). 

Thirdly, height (F(2,19025)=40.446, p<0.0001) showed a main effect: additional boundaries 

were more likely to be hypothesised in [low] vowels than in [high] and [mid] vowels, 

however also this difference disappears for increasing residual duration of the segment 

(�=0.0072, F(2,19025)=6.377, p<0.005). Finally, roundness (�=0.3490, F(1,19025)=10.883, 

p<0.0001) showed a main effect: additional boundaries were less often positioned in [-round] 

vowels than in [+round] vowels ([-round]: 19.4% vs. [+round]: 29.1%).  

The higher number of additional boundaries for [dynamic] and for longer segments is 

again in agreement with the results presented above. During the production of a [low] vowel, 

the mouth is more open than during the production of a [high] or [mid] vowel, while for the 

production of the constriction of preceding and following consonants, the mouth needs to be 

fairly, or even entirely, closed. As a consequence, the formant transitions are comparatively 

greater in [low] vowels, which implies more acoustic change and thus more additionally 

hypothesised boundaries than in [high] and [mid] vowels. A similar explanation holds for the 

difference in the likelihood of additional boundaries for [+round] and [-round] segments. In 

order to produce a round vowel, there is more lip movement involved compared to the 
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production of an unround vowel, which results in more acoustic change, and thus an increase 

in additional boundaries for round vowels.  

C. Missed boundaries 

We subsequently investigated whether a missing boundary can be predicted on the basis of its 

segment context. For these analyses, we followed the general procedure of the analysis of the 

additional boundaries. As indicated above, the algorithm missed 13,385 boundaries. To 

ensure a boundary was indeed missed and not merely shifted in time, we restricted our 

analyses to the 7,733 missed boundaries that were not preceded or followed by additional 

boundaries. These were compared to 18,105 boundaries that were not missed and also were 

not preceded or followed by additional boundaries. Thus, 57.8% (7,733 of 13,385) of the 

missed boundaries were ‘true’ missed boundaries. Again, the number of missed segments is 

high enough to be able to detect patterns in the errors made by the unsupervised segmentation 

algorithm. 

 Acoustic change leads to the hypothesising of boundaries. So, if the frames on either 

side of the boundary are similar, boundaries are more likely to be missed. We therefore expect 

that only the agreement in manner class is a meaningful predictor. This is easily illustrated 

with a few examples. Imagine a segment [f] followed by [�]. [f] and [�] are both [static] 

segments (see Table II). Even though there is an agreement in staticity, the acoustic change 

between the two segments is rather big, since this is a transition from a fricative to a vowel. 

Likewise, imagine the transition from an [l] to a [d] sound. Even though there is agreement in 

voice and place, the acoustic change occurring when going from the first to the second 

segment will be quite big again, as this is a transition from an approximant to a stop. We 

hypothesise that the frames on either side of a boundary are similar when the manner of 

articulation is similar, and thus that boundaries are more likely to be missed when there is an 
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agreement in manner AF value for the two segments on either side of the boundary. We tested 

this in our analysis.  

For each (missed or present) boundary, we determined the phone label of the 

preceding and following segment from the TIMIT transcription and their manner AF values 

(following Table II). The durations of the segments turned out to correlate with their manners 

of articulation; therefore, the duration of the preceding segment was orthogonalised with the 

manner of the preceding segment; likewise, the duration of the succeeding segment was 

orthogonalised with the manner of the succeeding segment.  

We created a new variable indicating whether the two manner AF values of the 

surrounding segments were similar or dissimilar. We grouped together approximants, vowels, 

retroflexes, and nasals since for all these sounds the constriction of the vocal tract is minimal, 

this in contrast to fricatives and stops where there is a clear closure or audible turbulence. 

[silence] segments were grouped together with fricatives and stops, since stops also have 

silent portions in them.  

The residual durations, the recoded manner AF values of the preceding and 

succeeding segments, and the two-way interactions were tested as fixed predictors. As crossed 

random factors, the phone identities of the two segments, as well as the speaker identity were 

tested. Only those predictors that proved to be significant were kept in the model.  

The resulting model showed that of the random predictors only identity of the 

preceding and succeeding segments contribute to the explanation of the variation. We found a 

main effect for the agreement in manner between the two segments (�=1.154, 

F(1,25832)=853.697, p<0.0001). As expected, boundaries are more likely to be missed when 

the segments on either side of the boundary have the same manner class. The acoustic 

changes occurring when going from a fricative, silence or stop to a retroflex, nasal, vowel, or 

approximant, or vice versa, are far greater than when going from a segment from one class to 
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a segment from the same class. Furthermore, we found a main effect for the residual duration 

of the preceding segment (�=0.0279, F(1,25832)=681.684, p<0.0001): the likelihood of 

missing a boundary decreases with increasing duration of the preceding segment; however, 

this is less so when both segments have the same manner class (�=0.0190, 

F(1,25832)=235.010, p<0.0001). The residual duration of the succeeding segment also 

showed a main effect (�=0.0102, F(1,25832)=218.029, p<0.0001): again, an increasing 

duration reduces the likelihood of missing a boundary. The effect of the duration of the 

succeeding segment attenuates with increasing duration of the preceding segment, and vice 

versa (�=0.00004, F(1,25832)=11.768, p<0.05).  

As explained above, the MMC analysis window is exactly 90 ms long, and MMC only 

hypothesises one boundary per analysis window. Thus, in case segments are much shorter 

than 90 ms, especially when there are multiple segments embedded in the 90 ms analysis 

window, MMC will miss some of the boundaries between the segments. With increasing 

segment duration, the analysis window will no longer contain more than two segments, but 

two or only one segment; this thus results in a smaller likelihood of missing boundaries. 

Nevertheless, when the segments on either side of the boundary are similar, there is little 

acoustic change and thus the likelihood of missing that boundary increases compared to when 

the segments on either side are dissimilar, as the boundary detection method will be less likely 

to detect the acoustic change.  

D. Summary 

As is clear from the above analyses of the additional boundaries, the duration of the segments 

plays a major role in predicting the presence of an additional boundary. In all analyses, 

duration showed a main effect. If segments are longer, it is more likely that the frames in the 

90 ms analysis window all belong to the same segment. MMC will always hypothesise a 

boundary, even if the acoustic change within the segment is very small as the MMC algorithm 
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is sensitive to the tiniest of changes in MFCC feature space. If the acoustic change is big 

enough, it is picked up by the peak detector, or if the boundaries were consistently placed 

over time by the MMC algorithm it is picked up by the mask detection method (see Section 

III), resulting in an additional boundary. The second major finding is that stops get more 

additional boundaries than any other type of segment. MMC is designed to group together 

frames that are similar. Since stops typically consist of two distinct parts, whereas our 

transcription of the [stop] segment puts both parts into one segment, the algorithm often 

divides the stop into two separate segments (so the boundary detection method is able to 

detect the boundary), resulting in the hypothesis of additional boundaries. This effect of 

manner is attenuated in longer obstruents, as all long segments are equally prone to additional 

boundaries due to the characteristics of the applied segmentation algorithm. The fourth major 

finding is the effect of staticity. Staticity indicates whether an acoustic change occurs in the 

segment or not. As explained above, dynamic change is the basis for hypothesising 

boundaries. It was thus to be expected that [dynamic] segments more often have an additional 

boundary than [static] segments. 

The analyses of missed boundaries showed that duration also plays a major role in 

predicting the presence or absence of a boundary: the likelihood of hypothesising a boundary 

increases with increasing duration of the preceding and succeeding segment. As explained 

above, MMC only hypothesises one boundary per analysis window. In case segments are 

much shorter than 90 ms, especially when there are multiple segments in the analysis window, 

MMC will miss some of the boundaries. With increasing segment duration, the analysis 

window will contain fewer segments thus reducing the likelihood of missing boundaries. The 

second interesting finding is that boundaries are more likely to be missed when the segments 

on either side of the boundary have the same manner class, which is to be expected since 
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when frames on either side of the boundary are similar, the acoustic change is smaller, thus 

increasing the likelihood of missing the boundary.  

 

VI. GENERAL DISCUSSION 

Despite using different algorithmic implementations, most unsupervised speech segmentation 

methods achieve similar performance in terms of percentage correct boundary detection (at 

similar under- or over-segmentation rates; see Section II). Nevertheless, unsupervised speech 

segmentation algorithms are not able to perfectly reproduce manually obtained reference 

transcriptions. We are interested in trying to unearth the fundamental problems for 

unsupervised automatic speech segmentation algorithms. To that end, we compared a phone 

segmentation obtained using only the acoustic information present in the signal with a 

reference segmentation created by human transcribers, and analysed the boundaries that were 

additionally hypothesised and those that were missed. 

The comparison of the different unsupervised speech segmentation algorithms and 

their performances in Section II showed that more sophisticated automatic segmentation 

algorithm will likely result in an improved segmentation algorithm. However, in such more 

sophisticated systems, it is more difficult to tease apart the effects of different parts, e.g., 

related to the heuristics, assumptions, or signal processing, of the segmentation algorithm; 

furthermore, the results become specific to that segmentation algorithm. The criterion that 

often underlies the decision process for the hypothesis of boundaries in unsupervised 

automatic speech segmentation algorithms is acoustic change. This let us to the question how 

good an indicator of a segment boundary acoustic change is. To answer this question, we 

chose to analyse the results of an automatic segmentation algorithm that only uses acoustic 

change as the criterion for hypothesising a segment boundary, and that produced enough 

errors that made it possible to detect patterns in the errors. This enterprise indicated where 
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acoustic change is indeed a correct indicator of a segment boundary, and where it is not, thus 

revealing fundamental problems for automatic speech segmentation algorithms.  

It is important to note though that the criterion of acoustic change can be applied in 

several ways with different underlying assumptions of which ours is just one. As a 

consequence, the results and thus the analyses presented in this paper are still somewhat tied 

to the speech segmentation algorithm that was used. Nevertheless, we believe that the results 

found are directly related to the acoustic change criterion and will hold for most other speech 

segmentation algorithms based on this criterion.  

The analyses showed that acoustic change indeed is a fairly good indicator of segment 

boundaries: 67.9% of the boundaries hypothesised by the MMC algorithm coincide with 

segment boundaries when there is no over-segmentation. The analyses showed that the MMC 

algorithm is sensitive to very subtle changes within a segment: it was able to pick up acoustic 

changes as great as the transition from the closure to the burst of a plosive, but also as subtle 

as the formant transitions in [low] vowels.  

 So, why are some boundaries erroneously inserted or missed? The analyses showed 

that the errors made by the unsupervised speech segmentation algorithm can be split into three 

groups. Here, we will address these three groups of errors made by the segmentation 

algorithm. Below, we will give suggestions as to how we believe these errors can (partially) 

be dealt with in order to improve unsupervised speech segmentation. First of all, the MMC 

algorithm has problems related to segment duration. Secondly, the MMC algorithm has 

problems dealing with adjacent segments that are similar; boundaries are likely to be missed if 

both segments have the same or a similar manner class, e.g., a nasal followed by a vowel. We 

should note, however, that this is also problematic for human transcribers. Thirdly, the 

algorithm has no means of dealing with inherently dynamic phones; the algorithm, for 

instance, often hypothesises boundaries between the closure and the burst in stops resulting in 
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two separate segments instead of one stop segment. We believe that most, if not all, of these 

problems will occur in most current algorithms of unsupervised speech segmentation that use 

acoustic (rate of) change as the only, or the most important, means to segment speech. In 

order to develop unsupervised speech segmentation algorithms that are able to create 

segmentations that are closer to those created by human transcribers, these three main 

problems need to be dealt with. 

A partial solution to the issue of segment duration is related to the way MMC 

performs speech segmentation. In the analysis, a fairly long window of 90 ms was used which 

means that we may miss some boundaries in a series of short segments, as the MMC 

algorithm can only hypothesise one boundary per window. However, a short(er) analysis 

window is more likely to contain frames belonging to one segment only, resulting in more 

additional boundaries. One way to improve the algorithm’s performance for short segments is 

to use a multi-class MMC (Zhao et al., 2008), instead of the two-class MMC we used so far; 

this will enable the detection of several clusters within one analysis window. Another way of 

improving the algorithm is to use an analysis window that changes in size dynamically or 

performs the analysis using multiple window sizes; this could also help reduce the number of 

additional boundaries in longer segments. This will also make it possible to deal with 

segments that inherently differ in duration, e.g., consonants are in principle shorter in duration 

than vowel. A third method is an approach or model that is able to keep track of the duration 

(as a function of speech rate) and knows when the right conditions are met to hypothesise a 

boundary. One way of doing this is to make the threshold � of the Euclidean distance method 

dependent on the distance to the last hypothesised boundary. This might however result in an 

over-segmentation. Future research will shed light on these possible solutions. 

One way of dealing with boundaries that are missed between adjacent segments where 

acoustic change between the segments is small is to allow the MMC algorithm to over-
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segment and then apply rules to filter away the additional hypotheses. An example of such a 

rule might be the removal of the additional boundary that is hypothesised in stops. For 

instance, if a segment preceding a boundary contains silence or murmur and the segment 

following the boundary contains a burst, the boundary between the two segments should be 

removed. These rules may be formulated on the basis of statistical regularities in large 

datasets. Possibly, some of these rules may need to be language dependent. This line of 

reasoning suggests that we need to know what the sound is in order to be able to segment the 

speech more accurately.  

Unsupervised speech segmentation algorithms are necessarily bottom-up approaches, 

since they have no prior knowledge of the material (other than the acoustic signal). They 

hypothesise boundaries without knowledge of possible acoustic phenomena related to the 

transition from one segment to the next. They have no knowledge about the number of 

segments there are in the speech material they are supposed to segment, nor about the types of 

labels of the segments. This thus implies that rules based on durational information, 

information about the (dis)similarity of adjacent segments, or inherently dynamic phones 

cannot be obtained in a bottom-up fashion. So perhaps unsupervised speech segmentation can 

only be improved by including so-called top-down information, i.e., information about 

segment labels, as is used by supervised speech segmentation algorithms. However, this 

would be undesirable for reasons listed in Section I. 

 In keeping with the wish to build a system that is flexible and language-independent 

we propose a system that, rather than taking the fully supervised approach of training a 

predefined set of phone models, automatically clusters the hypothesised segments that are 

derived from acoustic change into broad classes, such as voiced or voiceless, classes for 

different durations, and/or classes associated with some of the other AF values on the basis of 

(dis)similarities in the acoustic signal, and then reconsider the hypotheses accordingly. We 
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refer to this type of information as automatically derived top-down information. This 

approach would yield a multi-stage system, consisting of a mix of bottom-up and 

automatically derived top-down information used for the task of speech segmentation. In such 

a system, the first stage would consist of the original bottom-up unsupervised speech 

segmentation algorithm; its output would subsequently be smoothed by a model based on the 

labels of the broad classes and the acoustic signal in a separate step.  

To summarise, the analyses showed that acoustic change indeed is a fairly good 

indicator of segment boundaries: over two thirds of the boundaries hypothesised by the MMC 

algorithm coincide with segment boundaries when there is no over-segmentation. The 

remaining errors highlighted the fundamental problems for unsupervised automatic speech 

segmentation methods; these are related to segment duration, sequences of similar segments, 

and inherently dynamic phones. In order to improve unsupervised automatic speech 

segmentation, we suggest current one-stage bottom-up segmentation methods to be expanded 

into two-stage segmentation methods that are able to use top-down information based on 

automatically derived broad classes and rules. In this way unsupervised methods can be 

improved while remaining flexible and language-independent. Note, however, that some rules 

might be language-dependent. Obviously, when including these rules, the resulting two-stage 

segmentation method will no longer be language-independent. 

To conclude, it is difficult to hypothesise what would happen to our analyses when 

they would have been carried out with a more sophisticated speech segmentation algorithm. 

We therefore would like to encourage future papers on new algorithms of unsupervised 

automatic speech segmentation to also include an analysis of the errors, along the lines of our 

analyses of additionally hypothesised and missed boundaries, so it will become clear where 

the improvement of the more sophisticated segmentation algorithm originates. 
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Footnotes 
1 One segment or combination of AF values is used as the ‘Intercept’, i.e., the default, to 

which all other segments or combinations of AF values are compared. 
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Table I. Specification of the AFs and their respective values. 

AF Values 

manner approximant, retroflex, fricative, nasal, stop, vowel, silence 

place bilabial, labiodental, dental, alveolar, velar, nil, silence 

voice +voice, -voice 

height high, mid, low, nil, silence 

backness front, central, back, nil 

roundness +round, -round, nil 

staticity static, dynamic 
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Table II. Feature value specification of each TIMIT phone label in the test set. Note that the 

affricates /t�, d�/ are classified as fricatives since the largest parts of these segments are 

continuous. 

Phone manner place voice height backness roundness staticity 

� vowel nil +voice low front -round static 

� vowel nil +voice mid front -round static 

	
 vowel nil +voice low front -round dynamic 

�� vowel nil +voice mid front -round dynamic 

	� vowel nil +voice low front -round dynamic 

 vowel nil +voice high front -round static 

i vowel nil +voice high front -round dynamic 

� vowel nil +voice high front -round static 

� vowel nil +voice mid central -round static 

� vowel nil +voice mid central -round static 

� vowel nil +voice low back +round static 

�
 vowel nil +voice mid back +round dynamic 

�� vowel nil +voice low back +round dynamic 


 vowel nil +voice high back +round static 

u vowel nil +voice high back +round dynamic 

� vowel nil +voice low back +round static 

� vowel nil +voice high back +round dynamic 
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l approximant alveolar +voice nil nil nil dynamic 

�� approximant alveolar +voice nil nil nil dynamic 

w approximant velar +voice nil nil nil dynamic 

j approximant velar +voice nil nil nil dynamic 

p stop bilabial -voice nil nil nil dynamic 

b stop bilabial +voice nil nil nil dynamic 

t stop alveolar -voice nil nil nil dynamic 

d stop alveolar +voice nil nil nil dynamic 

k stop velar -voice nil nil nil dynamic 

g stop velar +voice nil nil nil dynamic 

� stop alveolar +voice nil nil nil dynamic 

f fricative labiodental -voice nil nil nil static 

v fricative labiodental +voice nil nil nil static 

� fricative dental -voice nil nil nil static 

� fricative dental +voice nil nil nil dynamic 

s fricative alveolar -voice nil nil nil static 

� fricative alveolar -voice nil nil nil static 

z fricative alveolar +voice nil nil nil static 

� fricative alveolar +voice nil nil nil static 

h fricative velar -voice nil nil nil static 

� fricative velar +voice nil nil nil static 

t� fricative alveolar -voice nil nil nil dynamic 
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d� fricative alveolar +voice nil nil nil dynamic 

m nasal bilabial +voice nil nil nil static 

n nasal alveolar +voice nil nil nil static 

� nasal velar +voice nil nil nil static 

m � nasal bilabial +voice nil nil nil dynamic 

n� nasal alveolar +voice nil nil nil dynamic 

�� nasal velar +voice nil nil nil dynamic 

�� nasal alveolar +voice nil nil nil static 

�� retroflex alveolar +voice nil nil nil dynamic 

r retroflex alveolar +voice nil nil nil dynamic 

�� retroflex nil +voice nil nil nil dynamic 

sil sil sil -voice sil nil nil static 
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Table III. Overview of the relabelling of the place AF values for the obstruent analysis. 

#fricatives #stops AF value 

Old New Old New 

[bilabial] 0 990 

[labiodental] 940 0 [front] 

[dental] 344 

1,284 

0 

990 

[middle] [alveolar] 2507 2507 1084 1084 

[back] [velar] 204 204 878 878 

 

 



 

 40 

Figure captions 

Figure 1. The maximum margin criterion: a and b are examples of a non-optimal dichotomy, c 

is an example of an optimal dichotomy. 

 

Figure 2. a: Sliding window frame assignment representation; each column shows the cluster 

label assignments (light/dark grey) at a given time. b: Euclidean distance between the means 

of the clusters; the detected boundaries are indicated by the solid vertical lines. Horizontally, 

the TIMIT segments and boundaries are indicated with the dashed vertical lines of the phrase 

“She had your dar(k)” (the [k] is not present in the figure; in IPA: /�I h�d j�r d�/). 

 

Figure 3. The percentage of segments containing an additional boundary per manner class. 

 

Figure 4. Results for the analysis of the [nasal] segments: The percentage of segments 

containing an additional boundary per staticity feature value (left) and per place feature value 

(right). 


