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Abstract 
The event-related potential (ERP) component named 
phonological mismatch negativity (PMN) arises when listeners 
hear an unexpected word form in a spoken sentence [1]. The 
PMN is thought to reflect the mismatch between expected and 
perceived auditory speech input. In this paper, we use the PMN 
to test a central premise in the predictive coding framework [2], 
namely that the mismatch between prior expectations and 
sensory input is an important mechanism of perception. We test 
this with natural speech materials containing approximately 
50,000 word tokens. The corresponding EEG-signal was 
recorded while participants (n = 48) listened to these materials. 
Following [3], we quantify the mismatch with two word 
probability distributions (WPD): a WPD based on preceding 
context, and a WPD that is additionally updated based on the 
incoming audio of the current word. We use the between-WPD 
cross entropy for each word in the utterances and show that a 
higher cross entropy correlates with a more negative PMN. Our 
results show that listeners anticipate auditory input while 
processing each word in naturalistic speech. Moreover, 
complementing previous research, we show that predictive 
language processing occurs across the whole probability 
spectrum. 
Index Terms: phonological mismatch negativity, speech 
perception, statistical language models, predictive coding, 
electroencephalography 

1.� Introduction 
Human listeners easily perceive words when listening to 
continuous speech in normal circumstances. This apparent ease 
hides the profound difficulty of extracting words from a speech 
stream, which is for example attested by the challenge of 
developing artificial speech recognition systems with human-
like performance. The details of the human speech processing 
system are still contentious. A long-standing debate concerns 
the timing and importance of top-down and bottom-up 
processing. Autonomous models of word recognition (e.g. 
Shortlist [4,5]) claim that early phases of speech processing are 
exclusively bottom-up and that top-down information can only 
exert influence at the lexical level. In contrast, interactionist 
models allow for top-down influence to affect lower-level 
acoustic processing (e.g. TRACE [6]). We investigate the 
influence of top-down expectations on the processing of low-
level auditory speech input with an event related potential 
(ERP) called the phonological mismatch negativity (PMN). 

The PMN (also referred to as N200, N250 or phonological 
mapping negativity) was first reported by [1,7,8]. They 

presented spoken sentences to participants while recording the 
electroencephalography (EEG) signal. The sentences were 
highly constraining, for example, “the gambler had a streak of 
bad …” and the final word either initially matched the expected 
word (e.g. luggage, when luck is expected), or, alternatively, 
mismatched the expected word. A mismatching word showed 
an early negativity, around 200 milliseconds from word onset 
compared to the initially matching word.  

The PMN is interpreted by [1] as reflecting a mismatch 
between expected word forms (based on the context) and 
observed auditory input (for a different interpretation of the 
PMN see [9,10]).  As noted by [11], this interpretation is closely 
related to an important claim in the predictive coding 
framework [2], namely, that higher-level cognitive processes 
generate predictions about low-level perceptual input. The 
mismatch between these predictions and the perceived input 
results in an error signal, useful for generating new 
expectations. For speech perception, this could mean that 
listeners generate word form expectations based on the 
preceding context, and violations of these expectations incur a 
processing cost. 

In the current study, we aim to investigate predictive 
language processing. As [12] notes, many experiments 
investigating predictive language processing only test extremes 
of predictability (see also [13,14]). For example, the N400, an 
ERP component thought to reflect word predictability ([15]; but 
see [10] for a different interpretation) is typically based on a 
comparison of very likely versus very unlikely words. The 
aforementioned PMN is for example elicited with highly 
constraining sentences as the example above. This leaves open 
the question of whether language processing normally involves 
prediction, or only in these extreme cases.  

Recently, several studies (e.g. [16,17]) have shown that the 
whole spectrum of word predictability can be investigated by 
utilizing information-theoretic measures. For example, [16] 
used word surprisal, estimated with a statistical language 
model, to successfully predict the amplitude of the N400 
measured while participants were reading sentences. Their 
approach is not based on the dichotomy of likely versus 
unlikely words, but instead uses the whole range of word 
probabilities. Furthermore, they used a large set of naturalistic 
language materials (see also [18]), improving the ecological 
validity of their findings. These studies provide stronger 
evidence for prediction during normal language processing.  

In the current study we expand on this type of research with 
a mismatch measure inspired by the predictive coding 
framework. The measure developed in [3] quantifies the 
mismatch between expected and actual sensory speech input. 
To implement this mismatch measure, we need to quantify the 
mismatch between top-down expectations and bottom-up 
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observations. The top-down expectations are estimated with a 
statistical language model (SLM). The SLM estimates the 
probability P of a word Wi given the preceding words Wi-n … 
Wi-1 and thus captures the top-down expectations (see Eq. 1). 
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The bottom-up speech input will be represented with an 
auditory fragment of the initial part of the current word. This 
audio fragment needs to be processed in such a way that it can 
update word expectations. To achieve this, we use automatic 
speech decoding techniques used in speech recognition 
software and adapt these to estimate the probability of a 
phoneme sequence given the partial auditory fragment of the 
current word. We use the resulting phoneme sequence 
probabilities to update the top-down expectations (i.e. word 
probabilities estimated with the SLM). In this manner we 
compute two word probability distributions (WPD): one prior 
WPD based only on the SLM output (which is based on the 
previous words), and one post WPD, which is the prior WPD 
updated with the phoneme sequence probabilities based on the 
audio fragment of the current word. 

The post WPD differs only from the prior WPD in the added 
auditory information. We therefore propose that the cross 
entropy between prior and post WPD quantifies the mismatch 
between high-level expectations (based on previous word 
context) and auditory input. The cross entropy can be computed 
according to Equation 2, whereby H denotes cross entropy, p 
the prior WPD, q the post WPD and X the WPD word list.  
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In the current study we test whether we can predict the 
amplitude of the PMN with the cross entropy between prior and 
post WPDs. Based on the predictive coding framework and the 
EEG literature, we hypothesize that with increasing cross 
entropy a listener incurs a higher processing cost (i.e. the 
sensory speech input is more surprising), which is reflected in 
a more negative amplitude in the 200 millisecond latency range. 
In the following sections, we will describe the EEG experiment 
and the methods used to test our hypothesis, followed by the 
results, a discussion and a conclusion.  

2.� Method 

2.1.� Participants 

Forty-eight neurologically unimpaired right-handed native 
speakers of Dutch (18-29 years, mean age = 21.7 years), 14 men 
and 34 women, participated in the three sessions of EEG 
recordings. All participants gave informed consent to 
participation. 

2.2.�Materials 

For the experimental stimuli, we used materials from two 
corpora: the Spoken Dutch Corpus [19] and IFADV [20]. These 
corpora contain audio recordings of Dutch speech. We 
extracted stretches of speech from these corpora, varying in 
duration from 4 to 15 minutes). The extracted speech stretches 
contain 50,277 word tokens (see Table 1). This subset, 
henceforth called Speech Corpus, consists of annotated speech 
from three speech registers (see Table 1). The different registers 
were selected for a different experiment and will not be relevant 

for the current study. For the estimation of the cross entropy 
(see Section 2.3) we used NLCOW14, henceforth COW 
[21,22], which is a large collection of web-crawled Dutch texts 
(4,7 billion words). 
 

Table 1: Overview of the materials in the Speech Corpus. 
speech style word tokens 

(word types) 
average word 
duration (ms) 

spontaneous dialogues 21,718 (2,435) 206 
read-aloud stories 13,209 (2,349) 256 
news broadcast 15,350 (3,526) 289  

total 50,277 (5,866) 245 

2.3.� Computing cross entropy 

We computed the cross entropy (as detailed in [3]) for all words 
longer than 60 and shorter than 700 milliseconds (46,734 word 
tokens, 5,254 word types). All subsequent analyses are 
performed on this subset of the Speech Corpus. To compute the 
cross entropy, we need a word probability distribution (WPD) 
at the start of a word and a WPD after the auditory update. 
Therefore, we estimated for each word one WPD prior and one 
WPD post auditory update. These WPDs consists of a list of 
approximately 200,000 word types with associated 
probabilities. We created the word type list by selecting the 
most frequent word types in the COW corpus. We use the term 
word type to refer to the surface form of a word, i.e. boy and 
boys are two different word types. 

The prior WPD is an estimation of word probabilities at the 
start of a word, given the preceding words (see Eq. 1). For 
example, consider the phrase he played the guitar, the prior 
WPD for the word guitar consists of the 200,000 word types 
with corresponding probabilities, given the preceding words he 
played the. To estimate the probabilities, we trained a 4th order 
Markov SLM on the COW corpus with the SRILM [23] toolkit 
(for smoothing we used Kneser-Ney discounting [24]). We used 
this SLM to create a prior WPD for each word in the Speech 
Corpus.  

We created the post WPD by updating the prior WPD with 
an auditory fragment of part of the current word (i.e. guitar). To 
perform this update, we transformed the audio fragment into 
probabilities of phoneme sequences. To estimate these 
probabilities, we extracted an audio fragment from word onset. 
By testing different durations for the auditory update, [3] 
showed that a fragment of 190 milliseconds, is the optimal 
duration for the cross entropy computation. We analyzed audio 
material by using KALDI [25] as a speech decoding 
framework. We provided KALDI with a dedicated decoding 
lexicon whereby each entry was a sequence of 1 – 8 phonemes. 
We limited the set of phoneme sequences (n ≈ 400,000) to those 
that are found in Dutch words. The KALDI analysis resulted in 
a 50-best list of phoneme sequences with corresponding 
probabilities. The phoneme sequences were matched with the 
word types in the prior WPD and the probabilities were adjusted 
accordingly by the conventional Bayes rule, with the post WPD 
as result. 

2.4.� Procedure 

Participants visited the lab on three occasions. Consecutive 
visits were separated by at least a week. Participants were fitted 
with the correct size electrode cap and seated in a sound-
attenuated booth. They were asked to sit still and keep eye-
movement and blinks to the minimum. During each visit, 
participants listened to approximately 90 minutes of speech, 

(2) 

(1) 
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270 minutes in total. The speech materials were presented over 
in-ear headphones (Etymōtic ER1) on a comfortable listening 
level (tested with a short audio fragment). The speech materials 
were presented in blocks of approximately 15 minutes, 
followed by a short break. During breaks in the experiment, 
yes-no comprehension questions were visually presented and 
participants responded via a button box. 

2.5.� EEG recording 

We placed 26 cap-mounted silver-chloride electrodes according 
to the 10 - 20 international system (Fp2, Fz, F3, F4, F7, F8, 
FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, P3, Pz, P4, P7, P8, 
CP1, CP2, CP5, CP6, O1, O2). We used four additional 
electrodes to monitor eye-related artifacts (eye-movements and 
blinks), placed at the outer left and right canthi, and below and 
above the left eye (converted off-line to horizontal and vertical 
EOG signals). Two additional electrodes were placed on the left 
and right mastoid. All electrodes were referenced to the left 
mastoid electrode and all electrode impedances were below 15 
kΩ before recording started. The EEG-data was amplified with 
an Easycap system, band-pass filtered with 0.01 and 100 Hz 
cut-off frequencies, and digitized at a 1000 Hz sample 
frequency. 

2.6.� Preprocessing 

The EEG-signal was re-referenced off-line to the left and right 
mastoid channels and filtered with a 5th order Butterworth 
bandpass filter with cut-off frequencies at 0.05 and 30 Hz. We 
removed artefacts from the EEG data semi-automatically, 
whereby all suggested artefacts were manually checked. We 
determined per block whether EEG channels with poor signal 
quality should be removed from the dataset. The Fp2 channel 
was completely removed from all recordings, due to poor 
overall signal quality. 

Subsequently, we removed activity related to blinks and eye 
movements from the EEG signal with the aid of independent 
component analysis (ICA). Following [26], the ICA was 
computed on data bandpass filtered with cut-off frequencies at 
1 – 30 Hz, with aid of the MNE toolkit [27,28]. We visually 
inspected the resulting components and selected those that were 
related to blinks and eye movement. We recomposed the EEG-
data, bandpass filtered at 0.05 – 30 Hz, without the selected 
components.  

The cleaned EEG-signal was time-locked to the words in 
the Speech Corpus. We extracted an epoch from 300 
milliseconds before to a 1000 milliseconds after word onset for 
each word. All word epochs exceeding ± 75 µV on any channel 
were excluded from the dataset. We excluded the data of 9 (of 
the 48) participants because of poor signal quality (i.e. less than 
40% of the data remaining after artefact removal). This resulted 
in a dataset of 1,172,894 word epochs (52.3% of all data). 

3.� Results 
Based on previous literature (e.g. [1,9,11]), we expected a 
divergence of the grand average ERPs for low, middle and high 
cross entropy (i.e. we split the data into terciles based on cross 
entropy) at around 200 milliseconds from word onset at frontal 
sites. To select a latency range and a set of channels for analysis, 
we also inspected the grand average ERPs for all channels (see 
Figure 1 for a subset and Figure 2 for topographic plot of the 
relevant time window). We computed the average over the 150 
– 350 millisecond time window and the following channels: F7, 
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7 and T8. The result of 

this averaging was one value for each word epoch. Following 
[16], we did not subtract the baseline from the ERP. Instead, we 
used the baseline as predictor in our statistical model. We 
computed the baseline by averaging over the same channel set 
for the -150 – 0 millisecond time window. 

 
Figure 1: Grand average ERPs for words with low (blue), 
middle (yellow) and high (red) cross entropy. The x-axis shows 
time in milliseconds and the y-axis shows amplitude in µV 
(negative is plotted upwards). The vertical dashed lines indicate 
the window between 150 and 350 milliseconds. 
 
We analysed the data with linear mixed effects models [29] in 
R [30], with the per-word ERP amplitude as dependent variable 
and cross entropy as predictor of interest. The standardized 
covariates are the aforementioned baseline, the surprisal of the 
word, the entropy of the prior WPD, log frequency of the word 
in the COW corpus, the duration of the word, the word number 
in the sentence, and the word number in the block. Furthermore, 
we added participant and word as random effects. We 
considered a random slope for cross entropy by participant but 
did not include it in the final model, because it resulted in a 
convergence error. 
 
Table 2: Overview of the fixed effects in the linear mixed effect 
model with the PMN as dependent variable. The variable 
names, the beta (B) value, the standard error (SE B) and the t-
value (t) are reported. 

name B SE B   t 
intercept -0.23 0.04 6.5 
entropy 0.11 0.01 16.3 
surprisal -0.02 0.01 -1.9 
baseline 6.02 0.01 1145.9

log frequency 0.07 0.02 3.8 
duration -0.06 0.01 -6.7 

word in sentence -0.04 0.01 -6.4 
word in block -0.05 0.01 -8.5 
cross entropy -0.02 0.01 -3.6 

 
We computed two models: a simple model without the predictor 
of interest, cross entropy, and a second model with this 
predictor. Table 2 lists the fixed effects of the second linear 
mixed effect model. Model comparison reveals that the model 
with cross entropy significantly improves compared to the 
simple model χ = 4.86, p < .05. The PMN is more negative with 
increasing values of cross entropy. 
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Figure 2: Topographic difference plot between words with a 
high cross entropy versus words with a low cross entropy, 
averaged over the time window 150 - 350 milliseconds after 
word onset. 

4.� Discussion 
According to the predictive coding framework [2], the 
mismatch between prior expectations and sensory input is an 
important mechanism for perception. We tested this claim for 
speech perception with an event related potential (ERP) 
component named the phonological mismatch negativity 
(PMN). This component is thought to reflect the mismatch 
between expected and actual auditory word forms. Following 
[3], we quantified the mismatch between expectations and 
sensory input as the cross entropy between two-word 
probabilities distributions (WPD), one based on preceding 
words, and an updated version based additionally on the 
auditory input. We found that in line with our hypothesis, the 
cross entropy has a negative correlation with the PMN 
amplitude, i.e. higher cross entropy corresponds with a more 
negative amplitude of the PMN (see Figure 1 & 2 and Table 2). 
We propose that speech processing involves a comparison 
between high-level expectations and the auditory speech input. 
When the input mismatches with the expectations, this incurs a 
processing cost. 

We recorded the electroencephalography (EEG) signal 
while participants listened to naturalistic speech. Following 
[18], the speech materials were extracted from corpora and 
represented normal language. Participants listened to long 
stretches of speech (approximately 15 minutes), instead of 
individually presented sentences or words. This has the distinct 
advantage that more relevant EEG data can be acquired. 
However, the downside is an increase of artefacts, because it is 
not possible for participants to sit perfectly still or refrain from 
blinking for a block of 15 minutes. As a result, more materials 
needed to be removed (~ 50% of the word epochs) than in more 
classical EEG experiments. However, because we analysed 
most words (93%) in the speech materials, we were able to 
create a dataset with approximately one million word epochs, 
orders of magnitude larger than analysed in classical EEG 
experiments. 

The amount of data is important for this experiment. We 
investigated an ERP based on stimuli (i.e. words) while we 
could not control for sensory form or the preceding context, i.e. 
the target stimuli were the spoken words occurring in 
naturalistic speech. ERPs are sensitive to these kinds of 
differences [31] and it is only by averaging over very many 
tokens, which we had available, that this diversity averages out 
in the EEG signal. 

Since we investigate many words in many contexts, we 
could investigate predictive language processing not just in 
highly constraining or artificially (un)likely contexts. As [12] 
noted, most experimental evidence for predictive language 
processing is based on experiments using these kinds of 
artificial language input. Recent studies (e.g. [16,17,32]) have 
been using a new approach, whereby language processing costs 
are predicted based on information theoretic measures, 
investigating a wide range of the probability spectrum. We 
extended these findings by using the mismatch measure 
(developed in [3]) to predict processing costs of word forms 
during natural language perception. Our study shows that 
listeners do indeed anticipate word forms over the whole range 
of predictability, in line with the idea of graded predictions (see 
[13]). 

We propose that our finding is best explained by top-down 
feedback. This explanation is at odds with autonomous models 
of word recognition (e.g. Shortlist [4,5]), which claim that early 
speech perception consists of bottom-up-only processing and 
do not allow for top-down feedback. Norris et al. [14] defend 
the idea of no feedback by stating that processing of the 
acoustic signal is already optimal (by means of Bayesian 
inferencing), and therefore cannot be improved by feedback. 
However, feedback can be highly informative as an error-
detection device, informing the listener whether the current 
word priors are on point (i.e. how well do they explain the 
current input?). If the overall error increases, then the 
generative model needs to be adapted. The difference between 
the expected and perceived speech input (the error signal) 
provides a mechanism to dynamically adapt perceptual 
processing (and a built-in learning system to boot). This ‘error 
signal’-based reasoning is in line with predictive coding, which 
proposes that early stages of sensory input processing involves 
propagating the mismatch between the expected and actual 
sensory input. 

5.� Conclusions 
We used a novel experimental approach in which participants 
listened to naturalistic speech while their EEG signal was 
recorded. Based on one million EEG word epochs, we showed 
that the ERP named the PMN has a negative correlation with 
cross entropy, which quantifies the mismatch between expected 
and perceived auditory input. We showed that naturalistic 
speech stimuli can be used in an EEG experiment, and that it is 
possible to analyse most words (93%) in these speech materials. 
Furthermore, we extended research using an information-
theoretic measure to predict processing costs of word forms, 
and provided additional evidence for extensive predictive 
language processing. 
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